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. Basics: Shared multi-tenant cloud storage

[0 Vendor: the storage service provider.

— Gate servers: special nodes that schedule and keep track of the
execution of I/O requests from each tenant.

— Storage array: a large cluster of nodes to provide storage service.

[0 Tenant: the basic unit to allocate resources.
— User: each tenant consists of multiple standalone end-point users.
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. Scheduling targets

O Quality of Service (QoS)

— Predictable IOPS
 Reservation and limit

— Lower latency

O Scalability

— The ability for the system to serve more tenants.

[0 Scheduling target

— Minimizing the latency while bound the IOPS for each tenant
between a minimum reservation and a maximum limit.
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. MClock and dmClock methods

1 1/O resource allocation for virtual machines

— Proportional-share fairness subject to minimum reservations
and maximum limits on the IO allocations for VMs.

— Per-VM parameters: Reservations, Limits and Proportion

0 mClock and dmClock
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. mClock Method

0 mClock uses two main ideas:

— Multiple real-time clocks

* Reservation-based R-clock, Limit-based L-clock, and Proportion-
based clocks

— Dynamic clock selection
* Dynamically select one from multiple real-time clocks for scheduling.
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0 Tag assignment for i-th request
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from the VM v w \/ @
— Reservation Tag R/ = max{R}_, + % t} \ %

— Limit Tag L? = max{L}_, + -, }
— Proportion Tag P/




. Basic idea behind mClock

O Arequest is expected to be served in L, ~R;
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. dmClock: Distributed mClock

C0dmClock runs a modified version of mClock

— It piggybacks two integers p,and 6, with each request
of VM vto a storage server s.

* p, : the number of IO requests from v that have been served
as reservation-based between the previous request to s and
the current request.

* 0, :the number of 10 requests from v that have completed

service at all the servers between the previous request (from
v) to the server s and the current request.
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0 Modified tags

_ R;) = max{Rf_l + %, t} \Y/
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— L =max{Li_, +,t}




ultiple-tenant cloud storage systems
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. Mm2Clock architecture

0 A centralized component called PNode is used to
maintain counting information for 6, and p, used in the

dmClock method.
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. m2Clock v1: Centralized dmClock

0 Request arriving
— The gate forwards the message to PNode to get p and &

0 Request scheduled
— The gate should inform PNode about it
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. m2Clock v1: disadvantages

0 Heavy workload for PNode

— PNode has to react twice on average for every request

0 Long latency before scheduling

— The gate should inform the PNode about each request and wait
for response to get parameters p and o, which introduces a
constant round-trip latency.

O Single point failure

— When PNode crushes, it takes time to switch to a backup node.
During the process, gates cannot continue their scheduling.




. m2Clock v2: Updating in batch

0 Relax the strict bounding for better performance

— Each gate has a local version of p and 6, and assign the
requests accordingly on their arrival.

— Gates synchronize those parameters from PNode periodically in
background.
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. m2Clock v2: how to calculate p and 6

[0 Rethinking the physical meaning of p and d arguments in
dmClock

— They are related to the proportion of requests that is handled by
the given Gate

[0 E.g. Gate handles about 1-in-§ of all requests that is
generated by a tenant

—g:1,212,...=>68, = % so 2/3 requests are sent to g,

— gy 2,2,2,... => 6, = 3, so 1/3 requests are sent to g,
— Inversely, we can get §; and §, from the proportion of requests




. m2Clock v2: pros & cons

[0 Advantage over v1
— Reduce the workload for PNode
— Avoid the round-trip latency before assigning tags

— Gates are able to schedule requests with old p and & arguments
even if the PNode crashes

[0 Disadvantage
— Not that accurate as dmClock, especially in burst scenarios




. m2Clock v3: Local adjustment

[0 Allow each gate to adjust its local p and d accordingly.

— When a tenant starts to send a burst of I/O requests, the gate
may perform a local adjustment for p and 6.

[0 Calculate the parameters from the time intervals of
adjacent requests {7} :

pi = €1+ Xk=0 PrTik
8; = C2 + Xk=0 PrTi-k
— Learning: the model is trained on PNode, which has a complete

collection of time series of requests and gets the actual value of
pand d

— Forecast:;




. m2Clock v4: Burst broadcast

0 Another way is to do the synchronization immediately
when a burst occurs:

— Gate g meets a burst from Tenant t, it will inform PNode with the
information

— Besides a common response with p and &, PNode will also
inform all other gates to update their p and 0
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. Mm2Clock v4: Burst detection

O If any p and 0 varies k%, then it is identified as a burst
— A smaller k: PNode will have to do the broadcast all the time.

— Alarger k: v4 may just degrades to the origin v2 without
broadcasting.

[0 Simple adaptive burst detection

— Given a range of broadcast density: M~N times per second, and
adjust the k accordingly
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. Evaluation

0 Workload types
— Stable, Step-type, Sine-shaped, Bursty
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. Evaluation results: Bounding Accuracy

0 Percentage of time that IOPS is bounded in <reservation,
limit>.
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. Evaluation results: Latency

0 The latency result is normalized according to V1.
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. Evaluation results: Number of Messages

[0 Messages that is passed between nodes. The result is
normalized according to V1.
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. m2Clock: A brief comparison

V1: Centralized dmClock High High

V2: Updating in batch Low Low High
V3: Local adjustment Medium Low High
V4: Burst broadcast Medium Low High

0 V3: Also works for cases that number of I/O requests
changes smoothly.

O V4: performs better with abrupt bursts.




. Conclusion

[0 We extend the dmClock method to work with shared
cloud storage service.
— Bound the IOPS between <reservation, limit> for each tenant.
— Adding a centralized parameter node, called PNode.

0 Four m2Clock methods

— Mitigate the communication overhead
— Make the bounding more accurate







