
北京大学高能效计算与应用中心
Center for Energy-efficient Computing and Applications

m2Clock: Handling IO Performance for 
Shared Multi-Tenant Cloud Storage

Tong Meng, Xiaoyang Wang, Guangyu Sun

2019.05.09
CECA, Peking University



Outline

p Introduction
– Shared multi-tenant cloud storage
– Classic approaches to solve similar problems

p m2Clock methods

p Evaluation results

p Conclusion

2



Basics: Shared multi-tenant cloud storage

p Vendor: the storage service provider.
– Gate servers: special nodes that schedule and keep track of the 

execution of I/O requests from each tenant.
– Storage array: a large cluster of nodes to provide storage service.

p Tenant: the basic unit to allocate resources.
– User: each tenant consists of multiple standalone end-point users.

3

u11 u12

g1 g2

Storage Array

t1

u21 u22

t2

Gate servers

Tenants End-point users



Scheduling targets

p Quality of Service (QoS)
– Predictable IOPS

• Reservation and limit
– Lower latency

p Scalability
– The ability for the system to serve more tenants.

p Scheduling target
– Minimizing the latency while bound the IOPS for each tenant 

between a minimum reservation and a maximum limit.

4



Outline

p Introduction
– Shared multi-tenant cloud storage
– Classic approaches to solve similar problems

p m2Clock methods

p Evaluation results

p Conclusion

5



mClock and dmClock methods

p I/O resource allocation for virtual machines
– Proportional-share fairness subject to minimum reservations 

and maximum limits on the IO allocations for VMs.
– Per-VM parameters: Reservations, Limits and Proportion

p mClock and dmClock

6

mClock dmClock



mClock Method

p mClock uses two main ideas: 
– Multiple real-time clocks 

• Reservation-based R-clock, Limit-based L-clock, and Proportion-
based clocks

– Dynamic clock selection
• Dynamically select one from multiple real-time clocks for scheduling.

p Tag assignment for i-th request
from the VM v
– Reservation Tag 𝑅"# = max{𝑅")*# + *

,
, 𝑡}

– Limit Tag 𝐿"# = max{𝐿")*# + *
1
, 𝑡}

– Proportion Tag 𝑃"#

7



Basic idea behind mClock

p A request is expected to be served in 𝐿",~𝑅",

8

L/R tags for the same request

L-clock

R-clock

Expected ranges to serve each request



dmClock: Distributed mClock

pdmClock runs a modified version of mClock
– It piggybacks two integers ρv and δv with each request 

of VM v to a storage server s.
• ρv : the number of IO requests from v that have been served 

as reservation-based between the previous request to s and 
the current request.

• δv : the number of IO requests from v that have completed
service at all the servers between the previous request (from 
v) to the server s and the current request.

p Modified tags
– 𝑅"# = max{𝑅")*# + 45

, , 𝑡}

– 𝐿"# = max{𝐿")*# + 65
1 , 𝑡}

9



Multiple-tenant cloud storage systems

10

mClock: A single gate 
serves multiple tenants

dmClock: Multiple gates 
serve multiple tenants

Each tenant consists of 
several individual users

Scheduler

Requests

t1 t2

g

Global status

t1 t2

g1 g2

t1

t2

g1 g2



Outline

p Introduction

p m2Clock methods
– Version 1: Centralized dmClock
– Version 2: Updating in batch
– Version 3: Local adjustment
– Version 4: Burst broadcast

p Evaluation results

p Conclusion

11



m2Clock architecture

p A centralized component called PNode is used to 
maintain counting information for δv and ρv used in the 
dmClock method.

12

dmClock

dmClock

dmClock

PNode

g1

g2

g3



m2Clock v1: Centralized dmClock

p Request arriving
– The gate forwards the message to PNode to get ρ and δ

p Request scheduled
– The gate should inform PNode about it

13

Tenant ti Gate gk

request{k,i}
request{k,i}

done{}

tags{ρ,δ}

scheduled{k,i,b}

PNode



m2Clock v1: disadvantages

p Heavy workload for PNode
– PNode has to react twice on average for every request

p Long latency before scheduling
– The gate should inform the PNode about each request and wait 

for response to get parameters ρ and δ, which introduces a 
constant round-trip latency.

p Single point failure
– When PNode crushes, it takes time to switch to a backup node. 

During the process, gates cannot continue their scheduling.

14



m2Clock v2: Updating in batch

p Relax the strict bounding for better performance
– Each gate has a local version of ρ and δ, and assign the 

requests accordingly on their arrival.
– Gates synchronize those parameters from PNode periodically in 

background.

15

Tenant ti Gate gk

sync{k,Cb[N],Wb[N]}
tags{ρ[N],δ[N]}

PNode

done{}

request{k,i}



m2Clock v2: how to calculate ρ and δ

p Rethinking the physical meaning of ρ and δ arguments in 
dmClock
– They are related to the proportion of requests that is handled by 

the given Gate

p E.g. Gate handles about 1-in-𝛿 of all requests that is 
generated by a tenant
– g1: 1,2,1,2,… => 𝛿* =

8
9
, so 2/3 requests are sent to g1

– g2: 2,2,2,… => 𝛿9 = 3, so 1/3 requests are sent to g2

– Inversely, we can get 𝛿* and 𝛿9 from the proportion of requests

16

δ1

δ2

g1 g2 g1 g1 g2g1g2

3

1

g1

2 1 2

3



m2Clock v2: pros & cons

p Advantage over v1
– Reduce the workload for PNode
– Avoid the round-trip latency before assigning tags
– Gates are able to schedule requests with old ρ and δ arguments 

even if the PNode crashes

p Disadvantage
– Not that accurate as dmClock, especially in burst scenarios

17



m2Clock v3: Local adjustment

p Allow each gate to adjust its local ρ and δ accordingly.
– When a tenant starts to send a burst of I/O requests, the gate 

may perform a local adjustment for ρ and δ.

p Calculate the parameters from the time intervals of 
adjacent requests {𝜏}：

– Forecast: <
𝜌" = 𝑐* + ∑@ABC 𝜙@𝜏")@
𝛿" = 𝑐9 + ∑@ABC 𝜙@E 𝜏")@

– Learning: the model is trained on PNode, which has a complete 
collection of time series of requests and gets the actual value of 
ρ and δ

18



m2Clock v4: Burst broadcast

p Another way is to do the synchronization immediately
when a burst occurs:
– Gate g meets a burst from Tenant t, it will inform PNode with the 

information
– Besides a common response with ρ and δ, PNode will also 

inform all other gates to update their ρ and δ 

19

Gate g1

burst

tags

PNode Gate g2

tags

Gate g3

tags



m2Clock v4: Burst detection

p If any ρ and δ varies k%, then it is identified as a burst
– A smaller k: PNode will have to do the broadcast all the time.
– A larger k: v4 may just degrades to the origin v2 without 

broadcasting.

p Simple adaptive burst detection
– Given a range of broadcast density: M~N times per second, and 

adjust the k accordingly

20



Outline

p Introduction

p m2Clock methods

p Evaluation results

p Conclusion

21



Evaluation

p Workload types
– Stable, Step-type, Sine-shaped, Bursty

22

0

50

100

150

200

250

300

0 20 40 60 80

Step-type

0

50

100

150

0 10 20 30 40 50 60

Stable

0

50

100

150

0 10 20 30 40 50 60

Sine-shaped

0
100
200
300
400
500
600

0 10 20 30 40 50 60

Bursty



Evaluation results: Bounding Accuracy

p Percentage of time that IOPS is bounded in <reservation, 
limit>.

23

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

Stable Step-ype Sine-shaped Bursty

Bounding Accuracy

V1 V2 V3 V4



Evaluation results: Latency

p The latency result is normalized according to V1.

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stable Step-ype Sine-shaped Bursty

Latency (Normalized)

V1 V2 V3 V4



Evaluation results: Number of Messages

p Messages that is passed between nodes. The result is 
normalized according to V1.

25

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Stable Step-ype Sine-shaped Bursty

Number of Messages (Normalized)

V1 V2 V3 V4



m2Clock: A brief comparison

p V3: Also works for cases that number of I/O requests 
changes smoothly.

p V4: performs better with abrupt bursts.

26

Accuracy Latency Scalability

V1: Centralized dmClock High High Low

V2: Updating in batch Low Low High

V3: Local adjustment Medium Low High

V4: Burst broadcast Medium Low High



Conclusion

p We extend the dmClock method to work with shared 
cloud storage service.
– Bound the IOPS between <reservation, limit> for each tenant.
– Adding a centralized parameter node, called PNode.

p Four m2Clock methods
– Mitigate the communication overhead
– Make the bounding more accurate

27



Thank you!

28


